https://doi.org/10.1007/s12182-019-0340-8

Temitope Ajayi, Jorge Salgado Gomes & Achinta Bera

A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches

Petroleum Science volume 16, pages1028-1063 (2019)

- 専門課題:この論文を読んで、以下の質問に答えなさい。
- 砂岩層中に CO₂を貯留する場合の CO₂のトラップメカニズムを説明せよ。
 Explain the mechanism of CO₂ trapping during CO₂ storage in the sandstone formation.
- (2) CO₂の地中貯留を検討する場合,毛管圧と相対浸透率は重要な因子である。その理由を説明 せよ。
 Capillary pressure and relative permeability are important factors when considering geological

CO2 storage. Explain the reason.

(3) 式(10)と(11)は多孔質媒体内を CO₂ と水が 2 相流動するときの各成分 X_i^{α} の質量保存式を表 す。 $\alpha = w, l$ (水相をw, CO₂-rich 相をl) としたとき, CO₂ 地下貯留のシミュレーションで は、 X_i^{α} としてどのような成分を考慮すべきかを述べよ。

Equations (10) and (11) represent the mass conservation equations of each component X_i^{α} when CO₂ and water flow in two phases in a porous medium. Describe what components should be considered as X_i^{α} in the simulation of geological CO₂ storage.

- (4) 上述の質量保存式は、n個の成分X^a を独立変数とする非線形連立方程式になる。この非線形 連立方程式をどのように解くか、数値計算のアルゴリズムを説明しなさい。
 The above-mentioned mass conservation equations are *n* simultaneous nonlinear equations with *n* independent variables of component X^a_i. Explain the algorithm of numerical calculation, how to solve these nonlinear simultaneous equations.
- (5) CO₂貯留におけるリスクと課題を述べよ。Describe the risks and challenges in CO₂ storage.