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1. Valueof information
(M. Giles, TG, 2019)
(T. Hironaka, M. Giles, TG, H. Thom, 2020)

Motivated by applications to (medical) desision
making under uncertainty, we have proposed an
efficient Monte Carlo estimator for the expected
value of information:

EY
[
max
d∈D

Eθ|Y [fd(θ)]

]
−max

d∈D
Eθ [fd(θ)]
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Figure 3. MLMC results for Scenario 3.

5. Conclusions. In this paper, we have developed a multilevel Monte Carlo estimator
for EVSI, the expected value of sample information. The key difference from the multilevel
estimation for EVPPI, as studied in [11], is to use Bayes' theorem directly to rewrite the
expectation with respect to the posterior distribution of input random variables \theta given an
observation Y into the ratio of the expectations with respect to the prior distribution of \theta , and
then to estimate each of the expectations by using the same i.i.d. samples of \theta . As shown in
Lemma 3.9, we prove under Assumptions 3.1 and 3.4 that the nested ratio expectation can be
efficiently estimated by using the antithetic multilevel Monte Carlo estimator. Plugging this
result into a slightly generalized version of [11, Theorem 3], our antithetic multilevel estimator
is shown to achieve a root-mean-square accuracy \varepsilon at a cost of optimal O(\varepsilon  - 2). As mentioned
in Remark 3.11, without the antithetic technique, we can only expect a suboptimal result
for the overall computational complexity. Our theoretical analysis is supported by numerical
experiments.

In future work, following the idea from [3, 12], we will examine the use of an adaptiveD
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2. Sensitivity analysis
(TG, 2021)

We have proposed a simple algorithm to estimate a
sensitivity measure called Shapley effect for global
sensitivity analysis.

φj =
∑

∅6=u⊆{1,...,d}
j∈u

σ2
u/|u|

where σ2
u = Exu [(fu(xu))

2] with

f(x) =
∑

u⊆{1,...,d}
fu(xu).
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Fig. 2. The expected sum of squared errors for Ishigami function as a function of 𝑁 .

Fig. 3. The estimated Shapley effects of individual variables for Sobol’ 𝑔 function with
𝑁 = 214. The results obtained by our proposed algorithm are shown in yellow together
with the confidence intervals, while those by the shapleyPermRand estimator are
in purple. The exact overall variance, main effects, Shapley effects and total effects are
also shown for comparison.

for any non-empty 𝑢 ⊆ [1 ∶ 𝑑]. Thus, for an individual variable 𝑥𝑗 , the
main and total effects are given by

𝜏2{𝑗} =
1

3(1 + 𝑎𝑗 )2
and 𝜏2{𝑗} =

1
3(1 + 𝑎𝑗 )2

×
𝑑∏

𝓁=1
𝓁≠𝑗

[
1 + 1

3(1 + 𝑎𝓁)2

]

respectively. The Shapley effect is

𝜙𝑗 =
∑

∅≠𝑢⊆[1∶𝑑]
𝑗∈𝑢

1
|𝑢|

∏
𝓁∈𝑢

1
3(1 + 𝑎𝓁)2

,

which seems hard to simplify further.
In what follows, we set 𝑑 = 10 and 𝑎𝑗 = 𝑗 − 1. With this choice

of 𝑎𝑗 , the relative importance of individual variables is given by the
ascending order, i.e., 𝑥1 is the most important, 𝑥2 is the second most
important, and so on. The Shapley effects for all the input variables
are estimated according to Algorithm 1 and the shapleyPermRand
estimator with the same choice of 𝑁𝑣, 𝑚,𝑁𝑜, 𝑁𝑖 as considered in the
first test case. The result with 𝑁 = 214 is shown in Fig. 3. Similarly
to Fig. 1, we also plot the exact values of the overall variance, main
effects, Shapley effects and total effects. We can see that all of the
exact sensitivity effects decrease as the index increases. Here again, our

Fig. 4. The expected sum of squared errors for Sobol’ 𝑔 function as a function of 𝑁 .

Table 1
List of input variables for plate buckling example. CV denotes the coefficient of
variation.

Variable Description Mean CV Distribution type

𝑥1 Width 23.808 0.028 Normal
𝑥2 Thickness 0.525 0.044 Log-normal
𝑥3 Yield stress 44.2 0.1235 Log-normal
𝑥4 Elastic modulus 28623 0.076 Normal
𝑥5 Initial deflection 0.35 0.05 Normal
𝑥6 Residual stress 5.25 0.07 Normal

proposed algorithm provides better estimates with narrower confidence
intervals of the Shapley effects than the compared algorithm. The Shap-
ley effect for the variable 𝑥10, the least important variable, is estimated
to be negative by the compared algorithm, although it must take a non-
negative value by definition. Note that our proposed algorithm does not
ensure non-negativity, so that such an erratic result may be obtained
probabilistically particularly for small 𝑁 . However, it can be confirmed
from our result with 𝑁 = 214 that the estimated Shapley effects take the
values between the corresponding main and total effects, which agrees
with the theory.

An interesting observation is that the confidence interval for our
proposed algorithm gets narrower as the index increases, whereas it
stays almost the same width for the compared algorithm. The crucial
difference between the two algorithms is that our proposed algo-
rithm directly estimates the difference 𝜏2𝑢+𝑗 − 𝜏2𝑢 instead of estimating
𝜏2𝑢 and 𝜏2𝑢+𝑗 independently. If the variance of the function [(𝑓 (𝒙) −
𝑓 (𝒚𝑢+𝑗 ,𝒙−(𝑢+𝑗)))2−(𝑓 (𝒙)−𝑓 (𝒚𝑢,𝒙−𝑢))2]∕2 is smaller than those of (𝑓 (𝒙)−
𝑓 (𝒚𝑢+𝑗 ,𝒙−(𝑢+𝑗)))2∕2 and (𝑓 (𝒙) − 𝑓 (𝒚𝑢,𝒙−𝑢))2∕2, a direct estimation of
the difference 𝜏2𝑢+𝑗 − 𝜏2𝑢 should be more accurate. This way our pro-
posed algorithm avoids an unnecessary increment of the variance of
the estimator, particularly for the input variables with small Shapley
effects.

The expected SSEs are estimated by (4) with 𝑅 = 10 for the two
algorithms. Fig. 4 compares the results with various values of 𝑁 . The
expected SSE for our proposed algorithm is one order of magnitude
smaller than that for the compared algorithm and decays at the rate
almost of 1∕𝑁 .

4.3. Plate buckling

Here we consider a more realistic example from structural engi-
neering. As explained in [26], let us consider the buckling strength
of a rectangular plate that is supported on all four edges subjected to
uniaxial compression. As described in Table 1, we have 𝑑 = 6 input

3. Machine learning
(K. Ishikawa, TG, 2021)
(T. Moriyama, master’s thesis, FY2020)

Variational Bayes/autoencoders are a method to
find a good approximation of posterior distribution
of latent variables from parametric family. We have
proposed a new learning algorithm which directly
looks at the marginal log likelihood.

　　

図 4.12: 入出力の確率変数が異なるVAEのグラフィカルモデル

えばノイズ除去というタスクにおいては入力データはノイズ付きの画像であるの
に対して期待される出力はノイズの無い画像であるし, 超解像というタスクにおい
ては出力画像は入力画像よりも高解像度になっている. VAEは上図のグラフィカ
ルモデルによって表現される生成モデルに基づいたアーキテクチャを組むことで
こういった場合にも対応できる. すなわち, encoderは入力 x̃及び出力 xの共通の
潜在変数 zの近似事後分布 qϕ(z|x̃)を表現し, decoderは条件付き分布 pθ(x|z)を
表現するように設計すればよい. この場合, VAEの対数尤度について,

log pθ(x) ≥ Eqϕ(z|x̃)

[
log

pθ(x, z)

qϕ(z|x̃)

]

= Eqϕ(z|x̃)[log pθ(x|z)]−KL[qϕ(z|x̃)|pθ(z)] (4.19)

が成り立つから, 上式の右辺は対数尤度の変分下限となっており, 通常はこれを最
大化するようにVAEの学習を行う.

ここで, MLMCAEを入出力の確率変数が異なるVAEに対しても適用すること
を考える. データ集合D = {(xi, x̃i)}Ni=1と置く. 任意の分布 qϕ(z|x̃)と正の整数
N0を用いて log pθ(x)は次のように表せる.

log pθ(x) = logEpθ(z)[pθ(x|z)]

= logEqϕ(z|x̃)

[
pθ(x|z)pθ(z)

qϕ(z|x̃)

]

= lim
l→∞

Ez1,...,zN02
l∼qϕ(z|x̃)


log 1

N02l

N02l∑

i=1

pθ(x|zi)pθ(zi)

qϕ(zi|x̃)


 (4.20)

ここで,

fθ,ϕ(x, x̃, z) =
pθ(x|z)pθ(z)

qϕ(z|x̃)
(4.21)
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図 4.14: DVAE及びDMLMCAEの学習時間の推移

train test

DVAE 114.38 130.14

DMLMCAE(対数尤度) 111.65 113.01

DMLMCAE(ELBO) 132.08 135.85

表 4.3: DVAEとDMLMCAEの損失比較

図 4.15: DVAE及び DMLMCAEによるMNIST画像のノイズ除去 (上が DVAE,

下がDMLMCAEで, 上段が元画像, 中段が入力画像, 下段が出力画像)
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Note that we are even proceeding with several other projects.


